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Dynamical effects of counter-rotating couplings on interference between driving and dissipation
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We use an analytical method to study the dissipative dynamics of a two-level system (TLS) under a harmonic
driving. The method is based on a combination of the unitary transformation and Born–Markov master-equation
approach. Our main aim is to clarify the effects of counter-rotating (CR) terms of both the driving and TLS-bath
(dissipative) coupling on the dynamics, in comparison with the rotating-wave results of different schemes, i.e.,
the well-known traditional rotating-wave approximation method, and two particular methods: one just takes
into account the effects of the driving CR terms and the other the effects of the dissipative CR terms, which
are derived from our general treatment. Our main results are as follows: (i) by calculating the time-dependent
population difference and coherence, in the case of resonant strong driving, we demonstrate that the CR terms of
both the driving and dissipative coupling play an important role in the relaxation and dephasing processes, and
also the properties of the steady state; (ii) in the case of largely detuned driving, we find that the CR terms of
the dissipative coupling become negligible while those of the driving contribute dominant modifications to the
time evolution and steady state. Moreover, we examine the influence of the dissipation on coherent destruction
of tunneling under a largely detuned strong driving. We show that an almost complete suppression of the tunneling
can be achieved for a relatively long time; (iii) under certain conditions, we find numerical equivalence between
one of two particular methods and the Floquet–Born–Markov approach based on exact numerical treatment of
the Floquet Hamiltonian. It turns out that our method is more simple and efficient than the Floquet–Born–Markov
approach for both analytical and numerical calculations. By the general comparison of different treatments we
demonstrate the dynamical effects of CR terms of both the driving and the dissipative coupling on the coherence
and population difference.
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I. INTRODUCTION

The driven spin-boson model (SBM) has been widely
studied in experiment and theory, which is related to various
physical and chemical processes [1–4]. The model describes
the physics of a two-level system (TLS) driven by an external
force and coupled to a dissipative bosonic bath. The main
interest of the study is to understand how the interplay between
the driving and the dissipation influences time evolution and
decoherence of the TLS. Theoretically, the Hamiltonian of the
model in the localized representation reads (� = 1)

H (t) = −1

2
[�σx + A cos(ωLt)σz]

+
∑

k

ωkb
†
kbk + 1

2

∑
k

gk(b†k + bk)σz

= −1

2
�σx − A

4
(eiωLtσ− + e−iωLtσ+) +

∑
k

ωkb
†
kbk

+ 1

2

∑
k

gk(b†kσ− + bkσ+) + HCR1(t) + HCR2, (1)

HCR1(t) = −A

4
(e−iωLtσ− + eiωLtσ+), (2)

HCR2 = 1

2

∑
k

gk(b†kσ+ + bkσ−), (3)
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where σμ(μ = x,y,z) is the μ-component Pauli matrix and
σ± = (σz ± iσy)/2. � is the bare tunneling and A cos(ωLt) is
a time-dependent driving force of amplitude A and frequency
ωL. bk (b†k) is the annihilation (creation) operator of the kth
boson mode with frequency ωk , and gk is the coupling strength
between the TLS and kth mode of the bath. Besides, we
consider that the effect of the bosonic bath is characterized
by the Ohmic spectral density G(ω) = ∑

k g2
k δ(ω − ωk) =

2αωθ (ωc − ω) in which α is the dimensionless coupling con-
stant, θ is the usual step function, and ωc is the cutoff frequency.
HCR1(t) and HCR2 are the counter-rotating (CR) terms of the
driving and dissipative coupling, respectively. When omitting
HCR1(t) + HCR2, one can transform the Hamiltonian into a
time-independent form, which can be treated based on the
Born–Markov master-equation approach [5,6]. Usually, the
neglect of CR terms is called the rotating-wave approximation
(RWA), which is valid in the regime of weak driving and weak
damping. The neglect of HCR1(t) is also called the Rabi-RWA.
In the present paper, we propose a novel unitary transformation
to transform the Hamiltonian with HCR1(t) + HCR2 into a
RWA-like form and at the same time physically take into
account the influence of the CR terms on the time evolution
of the system in a wide parameter space beyond weak driving
and weak damping.

In spite of the simple form of the SBM Hamiltonian
[Eq. (1)], it is a nontrivial task to obtain the analytical
solution concerning the dynamical evolution. Various ap-
proximate methods have been applied to study dissipative
dynamics in such a system; for instance, the traditional
quantum optics approach [6–8], the path integral approach
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[2,9–12], the noninteracting blip approximation (NIBA) [1,2],
the Born–Markov master-equation approach [12–15], the
nonperturbative stochastic method [16], etc. Within these
methods, the NIBA provides a good approximate description
for strong damping and intermediate-to-high bath tempera-
tures. In contrast, the approaches based on the Born–Markov
approximation are preferred for weak damping and low
temperature. It has been demonstrated that the time-local
Born–Markov master equation is numerically equivalent to the
path integral approach in the regime of weak damping and low
temperature [12]. In general, the time-local master equations
are not suited for analytical calculation and one usually uses
the stationary Born–Markov master equation such as the works
in Refs. [6,14,15], which can be conveniently derived.

To take into account the CR terms of the driving, one usually
combines the Floquet theory with the Born–Markov master-
equation approach, which leads to the so-called Floquet–
Born–Markov (FBM) master equation [3,14]. One can find
the general procedure of the approach and its applications in
Refs. [3,14,17–20]. This method requires diagonalizing the
Floquet Hamiltonian and invoking a moderate RWA (MRWA)
to remove the explicit time-dependence in the corresponding
master equation [3]. The Floquet Hamiltonian is usually
easily diagonalized by a numerically exact treatment but
hardly by an analytically exact calculation [3,14]. Therefore,
one usually applies the perturbation theory in the amplitude A

for weak driving [21] or in the tunneling � for strong driving
[14]. The perturbative method cannot uniformly treat the
driving from weak to strong strength. For instance, in the limit
A/ωL � 1, the validity of the FBM approach based on von
Vleck perturbation theory in the tunneling � requires A � �

[14]. Besides, the role of the MRWA should be carefully
examined.

In our previous work, we considered HCR2 and took into
account the CR terms of the dissipative coupling by a unitary
transformation [22]. The transformation allows us to keep
the same mathematical simplicity of the formalism as for
the traditional RWA approach with dropping HCR1(t) + HCR2.
Although we avoid neglecting HCR2 in Ref. [22], we have
employed the Rabi-RWA in which HCR1(t) is omitted. Thus,
the method in Ref. [22] is not suited for discussing moderately
strong driving situations. To overcome this limitation, here,
we develop an extended approach based on a novel unitary
transformation. The unitary transformation is applied to
generate an effective Hamiltonian involving the effects of
all CR terms, i.e., HCR1(t) + HCR2. More importantly, the
effective Hamiltonian keeps the RWA-like form with modified
parameters. In this sense, the mathematical structure of the
method is as simple as the traditional RWA approach. On the
other hand, our general treatment may lead to two particular
cases: one is the case of Ref. [22] which does not consider
the effects of the driving CR terms, the other is that which
does not take into account the effects of the dissipative CR
terms. Besides, we find that the treatment based on the second
particular case can reproduce numerical results obtained by
the FBM master equation under certain conditions, which
helps us see clearly the role of the MRWA. Moreover, our
method is analytically simple and enables us to uniformly
treat weak to moderately strong driving, as compared with the
FMB approach based on perturbation theory.

The structure of the paper is as follows: In Sec. II, we
mainly introduce our general treatment based on the unitary
transformation as well as two particular treatments derived
from the general one. Besides, we discuss the validity of our
general treatment. In Sec. III, we derive the master equation
for the reduced density matrix governed by the effective
Hamiltonian we constructed and give its analytical solutions.
In Sec. IV, by calculating population difference and coherence,
we examine numerically and analyze the effects of the CR
terms on the time evolution and steady state of the system. In
addition, we reveal the relation between analytical solutions
derived by a particular treatment and those of the FBM
approach based on the exact numerical treatment of the Floquet
Hamiltonian. In the last section, we give a summary.

II. UNITARY TRANSFORMATION FORMALISM

A. Traditional rotating-wave approximation approach

We first review briefly the method based on the RWA. In
the weak-damping and weak-driving regime, it is convenient to
treat the issue using the traditional RWA approach in quantum
optics, which is based on the neglect of HCR1(t) and HCR2.
After the approximation, the Hamiltonian possesses the form

H RWA(t) = −1

2

[
�σx + A

2
(eiωLtσ− + e−iωLtσ+)

]

+
∑

k

ωkb
†
kbk + 1

2

∑
k

gk(b†kσ− + bkσ+). (4)

To proceed, the usual way is to transform the explicitly time-
dependent Hamiltonian into a time-independent Hamiltonian
with the unitary rotating operation

R(t) = exp

[
iωLt

(
−1

2
σx +

∑
k

b
†
kbk

)]
, (5)

which leads to the time-independent form

H̃ RWA = −1

2

(
δ0σx + A

2
σz

)
+

∑
k

(ωk − ωL)b†kbk

+ 1

2

∑
k

gk(b†kσ− + bkσ+), (6)

where δ0 = � − ωL is the detuning. Starting from this Hamil-
tonian and using the Born–Markov approximation [4,23], one
can easily derive the master equation for the reduced density
matrix of the TLS. Although the approach is mathematically
simple, it is at the expense of dropping HCR1(t) + HCR2. Thus,
it is only valid to discuss on-resonance or near-resonance
physics in the regimes of weak driving and weak damping.
In the following, we introduce a method to derive an effective
Hamiltonian taking the same mathematical form as H̃ RWA and
properly involving the effects of the CR terms of both the
driving and dissipative coupling.

B. General formalism and particular cases

To study the driven SBM physics from weak to strong
driving strength and beyond the weak-damping limit, we
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propose a method based on the unitary transformation H ′(t) =
eS(t)H (t)e−S(t) − ieS(t) d

dt
e−S(t). The generator of the unitary

transformation is

S(t) =
[
−i

A

2ωL

ζ sin (ωLt) +
∑

k

gk

2ωk

ξk(b†k − bk)

]
σz, (7)

where the parameters ζ ∈ (0,1) and ξk ∈ (0,1) will be de-
termined later. This generator is a combination of the two
generators in Refs. [22,24]. When ξk = 0, it becomes the
generator used for taking account of the effects of the CR terms
of the driving [24]. When ζ = 0, the generator (7) changes into
the generator of treating the CR terms of dissipative coupling
[22,25,26]. Setting X1 = ∑

k
gk

ωk
ξk(b†k − bk), we perform the

unitary transformation and obtain the resulting Hamiltonian,

H ′(t) = H ′
0(t) + H ′

1 + H ′
2(t), (8)

H ′
0(t) = −1

2
J0

(
A

ωL

ζ

)
η�σx − J1

(
A

ωL

ζ

)
η� sin(ωLt)σy

− 1

2
A(1 − ζ ) cos(ωLt)σz

+
∑

k

ωkb
†
kbk +

∑
k

g2
k

4ωk

ξk(ξk − 2), (9)

H ′
1 = −1

2
J0

(
A

ωL

ζ

)
η�iσy

∑
k

gk

ωk

ξk(b†k − bk)

+ 1

2

∑
k

gk(1 − ξk)(b†k + bk)σz, (10)

H ′
2(t) = −1

2
J0

(
A

ωL

ζ

)
�(cosh X1 − η)σx

− 1

2
J0

(
A

ωL

ζ

)
�(sinh X1 − ηX1)iσy

− J1

(
A

ωL

ζ

)
�(cosh X1 − η) sin(ωLt)σy

+ iJ1

(
A

ωL

ζ

)
�σx sin(ωLt) sinh X1

−�

(
σx cosh X1 + iσy sinh X1

)

×
∞∑

n=1

J2n

(
A

ωL

ζ

)
cos(2nωLt)

−�(σy cosh X1 − iσx sinh X1)

×
∞∑

n=1

J2n+1

(
A

ωL

ζ

)
sin[(2n + 1)ωLt], (11)

where η is determined by

η = 〈{0k}| cosh X1|{0k}〉 = exp

[
−

∑
k

1

2

(
gk

ωk

ξk

)2]
, (12)

with |{0k}〉 being the vacuum state of the bosonic bath. Jn(z) is
the nth-order Bessel function of the first kind. When deriving

the above equations, we used the identity exp(iz sin α) =∑∞
n=−∞ Jn(z)einα [27].
As shown in Eq. (8), we divided the transformed Hamil-

tonian into three parts according to harmonic oscillation
frequency nωL and the order-of-coupling strength gk . Except
for the constant term, the first part H ′

0(t) consists of terms that
satisfy two conditions: harmonic oscillation frequency nωL

with n = 0,1 and zeroth order in gk . If ζ is determined by

J1

(
A

ωL

ζ

)
η� = 1

2
A(1 − ζ ) ≡ Ã

4
, (13)

H ′
0(t) can be rewritten as (the constant term is neglected)

H ′
0(t) = −1

2
J0

(
A

ωL

ζ

)
η�σx − Ã

4
(σ+e−iωLt + σ−eiωLt )

+
∑

k

ωkb
†
kbk. (14)

Obviously, H ′
0(t) can be solved exactly and serve as a free

Hamiltonian.
The second part H ′

1 consists of the terms of order gk and
harmonic oscillation frequency nωL = 0 and will serve as the
perturbation Hamiltonian in the following treatment. If ξk is
set by

ξk = ωk

ωk + J0
(

A
ωL

ζ
)
η�

, (15)

H ′
1 takes the RWA form

H ′
1 = 1

2

∑
k

g̃k(b†kσ− + bkσ+), (16)

with a modified coupling strength

g̃k = gk

2J0
(

A
ωL

ζ
)
η�

ωk + J0
(

A
ωL

ζ
)
η�

. (17)

The third part H ′
2(t) can be omitted under certain conditions

in spite of its complex form. Notice that the first two lines
of H ′

2(t) represents the processes related to the multiboson
nondiagonal transitions and their contributions to the physical
quantities are of order g4

k and higher, which are negligible
for low-temperature and moderately weak dissipative regimes.
On the other hand, the remaining time-dependent terms are
multiplied by J1( A

ωL
ζ )(cosh X1 − η), Jn( A

ωL
ζ ) sinh X1 (n � 1)

and by Jn( A
ωL

ζ ) cosh X1 (n � 2), the contributions of which
are negligible to the driven dynamics as compared with the
time-dependent terms in H ′

0(t) due to the mixing of the Bessel
functions and terms of order gk or higher. Generally, the
validity of the approximation of neglecting the higher-order
Bessel functions (n � 2) depends on the driving parameters
A and ωL. We will discuss the validity of our treatment in
Sec. II C.

After omitting H ′
2(t), we arrive at our effective Hamil-

tonian Hζ -ξk-TRWA(t) = H ′
0(t) + H ′

1, where the superscript
ζ -ξk-TRWA means that our effective Hamiltonian of the
RWA-like form is obtained through the unitary transformation
with the parameters ζ and ξk . Similarly, it is convenient to
rotate it into a time-independent form by the same unitary
rotating transformation R(t). After the rotating operation, we
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readily obtain a time-independent Hamiltonian

H̃ ζ -ξk -TRWA = −1

2

(
δ̃σx + Ã

2
σz

)
+

∑
k

(ωk − ωL)b†kbk

+ 1

2

∑
k

g̃k(b†kσ− + bkσ+), (18)

where δ̃ = J0( A
ωL

ζ )η� − ωL. Comparing with H̃ RWA, we find
that in the present formalism the CR terms influence on
the dynamics and stable properties through the modified
quantities, i.e., δ̃, Ã, and g̃k . Besides, these quantities are
determined by the driving parameters as well as the dissipative
parameters, which reflects the interference between driving
and dissipation. In particular, we find that the spectral density
in our effective system is renormalized due to the modified
dissipative coupling as

G̃(ω) =
∑

k

g̃2
k δ(ω − ωk) = G(ω)

[ 2J0
(

A
ωL

ζ
)
η�

ω + J0
(

A
ωL

ζ
)
η�

]2

.

(19)
The key point of our method is clear, i.e., the unitary trans-

formation is applied to construct an effective Hamiltonian that
reduces the contributions of the omitted H ′

2(t) to make them
as small as possible. Moreover, the effective Hamiltonian is
simple enough for analytical calculations within the formalism
of the Born–Markov master equation.

From our general treatment above, we give directly two
unequal treatments by setting either ξk or ζ to zero. After
the ξk = 0 (ζ = 0) related transformation, we omit the CR
terms of the dissipative coupling (the driving) to construct a
RWA-like Hamiltonian. When making ξk = 0 in the unitary
transformation, we obtain

H ′(t) = Hζ -TRWA(t) + H ′
2(t), (20)

Hζ -TRWA(t) = −1

2
J0

(
A

ωL

ζ

)
�σx− Ã

4
(eiωLtσ− + e−iωLtσ+)

+
∑

k

ωkb
†
kbk + 1

2

∑
k

gk(b†kσ− + bkσ+), (21)

H ′
2(t) = −�

∞∑
n=1

J2n

(
A

ωL

ζ

)
cos(2nωLt)σx

−�

∞∑
n=1

J2n+1

(
A

ωL

ζ

)
sin[(2n + 1)ωLt]σy

+ 1

2

∑
k

gk(b†kσ+ + bkσ−), (22)

where the superscript ζ -TRWA represents that the CR terms of
the driving is involved by the ζ -related unitary transformation
and those of the dissipative coupling are neglected. The
parameters ζ and Ã are obtained from Eq. (13) with η = 1.
Similarly, Hζ -TRWA(t) can serve as effective Hamiltonian and
H ′

2(t) will be omitted. Surprisingly, this resulting effective
Hamiltonian can reproduce certain numerical results obtained
by the FBM master equation based on exact numerical

treatment of the Floquet Hamiltonian. We come back to discuss
this in Sec. IV.

When ζ = 0, the unitary transformation leads to another
transformed Hamiltonian [22]

H ′(t) = Hξk-TRWA(t) + H ′
2(t), (23)

Hξk -TRWA(t) = −1

2
η�σx − A

4
(σ+e−iωLt + σ−eiωLt )

+
∑

k

ωkb
†
kbk + 1

2

∑
k

g̃k(b†kσ− + bkσ+),

(24)

H ′
2(t) = −1

2
�σx(cosh X1 − η) − 1

2
�iσy(sinh X1 − ηX1)

− A

4
(e−iωLtσ− + eiωLtσ+), (25)

where the superscript ξk-TRWA represents that only the CR
terms of the dissipative coupling are taken into account by
ξk-related unitary transformation and those of the driving are
not. Here, the parameters η, ξk , and g̃k for Hξk-TRWA(t) are
determined by the corresponding Eqs. (12), (15), and (17)
with J0( A

ωL
ζ ) being replaced by 1 in the equations. This

time the omitted term H ′
2(t) involves the CR terms of the

driving and the terms of order g2
k or higher [see first line in

Eq. (25)]. Comparing with H RWA(t), we notice that the
modifications resulting from the CR terms are included in the
renormalized tunneling η� and the modified coupling strength
g̃k . In particular, the modified coupling strength leads to a
renormalized spectral density

G̃ (ω) =
∑

k

g̃2
k δ(ω − ωk) = G(ω)

(
2η�

ω + η�

)2

. (26)

In order to show the intrinsic difference among the four
effective Hamiltonians given above, we should pay attentions
to the different approximations invoked in the four treatments.
For the standard quantum optics approach, the omitted terms
are HCR1(t) + HCR2. Therefore, the method is valid in the
weak-driving and weak-damping regimes. For the effective
Hamiltonian Hζ -TRWA(t), we have directly dropped the CR
terms 1

2

∑
k gk(b†kσ+ + bkσ−) in the transformed Hamiltonian

(20) and the terms with Bessel functions of second order
and higher, and thus it is reasonably applied for weak to
moderately strong driving in the weak dissipative regime,
which is proved by our calculation in the following sec-
tion. When deriving Hξk-TRWA(t), we neglect the CR terms
−A

4 (e−iωLtσ− + eiωLtσ+) and the terms of order g2
k and higher

instead of HCR2, which takes into account the CR terms of the
dissipative coupling but is not practicable for strong driving
since the Rabi-RWA used in this particular treatment is only
valid in the weak-driving regime. Finally, we would like to
demonstrate that the general treatment of Hζ -ξk-TRWA(t) takes
into account the CR terms of both the driving and dissipative
coupling on the same footing and the omitted H ′

2(t) does
contribute to physical quantities at O(g4

k ) or O(g2
k

A2

ω2
L

ζ 2). We
show the detailed comparison in Sec. IV.
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C. Valid parameter regime of our general treatment

In this section, we give a valid parameter space of our
general treatment. The main approximation we use is the
neglect of H ′

2(t) [Eq. (11)] in the transformed Hamiltonian.
In a moderately-weak-damping regime, the validity of the
neglect of H ′

2(t) depends on the effects of higher-frequency
driving-related terms (nωL,n � 2), i.e., the fast-oscillating
terms that are multiplied by the second- or higher-order
Bessel functions. In general, these terms can be safely dropped
under certain conditions, as discussed in Ref. [24]. The valid
parameter regime of our method depends on both of the
ratios A/ωL and �/ωL. Our method is fully justified when
A/ωL < 2. Especially, for �/ωL 	 1, our method works very
well even if A/ωL increases up to 6. Therefore, it is reasonable
for our method to study the physics of the driving-parameter
space, which is of primary interest to us. For instance, the
driving-parameter regime in quantum optics mainly focuses on
the resonant driving with the strength A/ωL < 2. On the other
hand, our method is practicable to study the ultrastrong driving
cases, such as ωL = 10� and A/ωL < 2.5. All in all, our
method can uniformly treat the weak to strong driving, which
is beyond the traditional perturbation theory in the amplitude
A or the tunneling �. Moreover, our treatment is analytically
more simple than the FBM approach.

III. MASTER EQUATION AND ITS SOLUTIONS

A. The master equation

Since the effective Hamiltonians in our three treatments
have the same mathematical form as H RWA(t), the derivation
of master equations for the effective Hamiltonians is similar.
In the following, we give the master equation for H̃ ζ -ξk -TRWA as
an instance. For the sake of simplicity, we omit the superscript
ζ -ξk-TRWA in the following derivation. We divide H̃ into two
parts, H̃ = H̃0 + H̃1, where

H̃0 = −1

2

(
δ̃σx + Ã

2
σz

)
+

∑
k

(ωk − ωL)b†kbk (27)

is the free Hamiltonian, and

H̃1 = 1

2

∑
k

g̃k(b†kσ− + bkσ+) (28)

is the interaction Hamiltonian. In the interaction picture, the
density matrix of the TLS and bath ρ̃I

SB(t) = eiH̃0t ρ̃SB(t)e−iH̃0t

satisfies the equation of motion,

d

dt
ρ̃I

SB(t) = −i
[
H̃ I

1(t),ρ̃I
SB(t)

]
, (29)

where superscript I indicates that the operator is in the
interaction picture, square brackets [,] is the usual commu-
tator operation, and H̃ I

1(t) = eiH̃0t H̃1e
−iH̃0t . The differential

equation (29) can be integrated formally, yielding the formal
solution

ρ̃I
SB (t) = ρ̃I

SB(0) − i

∫ t

0
dτ

[
H̃ I

1(τ ),ρ̃I
SB(τ )

]
. (30)

Substituting the formal solution (30) into Eq. (29) and taking
trace over the bath, we obtain an integrodifferential equation

for the reduced density matrix ρ̃I
S(t) = TrB[ρ̃I

SB(t)], which
reads

d

dt
ρ̃I

S(t) = −
∫ t

0
dτTrB

[
H̃ I

1(t),
[
H̃ I

1(τ ),ρ̃I
SB(τ )

]]
. (31)

To proceed, we can invoke Born–Markov approximation [4,23]
as usual. It is achieved by replacing ρ̃I

SB (τ ) and H̃ I
1(τ ) with

ρ̃I
S(t)ρB and H̃ I

1(t − τ ), respectively, where ρB is the density
matrix of the bath, and letting the upper limit of the integral
go to infinity, and then, we obtain that

d

dt
ρ̃I

S(t) = −
∫ ∞

0
dτTrB

[
H̃ I

1(t),
[
H̃ I

1(t − τ ),ρ̃I
S(t)ρB

]]
. (32)

After transforming the equation back into the Schrödinger
picture, we arrive at the desired master equation at zero
temperature,

d

dt
ρ̃S(t) = −i[H̃0S,ρ̃S(t)] −

∫ ∞

0
dτ

1

4

∑
k

g̃2
k

× {
e−i(ωk−ωL)τ

[
σ+,e−iH̃0Sτ σ−eiH̃0Sτ ρ̃S(t)

]
− ei(ωk−ωL)τ

[
σ−,ρ̃S(t)e−iH̃0Sτ σ+eiH̃0Sτ

]}
, (33)

where H̃0S = − 1
2 (δ̃σx + Ã

2 σz) and we have traced out the
degrees of freedom of the bath explicitly.

It is convenient to denote the mean value of the μ-
component Pauli operator averaged with respect to ρ̃S(t) by
〈σ̃μ(t)〉 = TrS[ρ̃S(t)σμ] and introduce the real Bloch vector
〈
̃σ (t)〉 = (〈σ̃x(t)〉,〈σ̃y(t)〉,〈σ̃z(t)〉). Using these notations, we
can easily derive the Bloch equations from the master equation,
which can be written in a matrix form,

d

dt
〈
̃σ (t)〉 = M〈
̃σ (t)〉 + 
I , (34)

where the matrix M is given by

M =
⎛
⎝−γx

Ã
2 γc

− Ã
2 −γy δ̃

0 −δ̃ −γz

⎞
⎠ , (35)

and 
I = (γx,0, − γc) is the column vector determining the
steady-state solutions of the equations. The parameters are
defined as

γx = γy + γz,

γy = [γ (ωL + �̃) cos2 φ − γ (ωL − �̃) sin2 φ] cos(2φ)

+ γ (ωL) sin2(2φ),

γz = γ (ωL + �̃) cos2 φ + γ (ωL − �̃) sin2 φ,

γc = [γ (ωL) cos(2φ) − γ (ωL + �̃) cos2 φ

+ γ (ωL − �̃) sin2 φ] sin(2φ), (36)

where

cos2 φ = 1

2

(
1 + δ̃

�̃

)
, (37)

and

�̃ =
√

δ̃2 + Ã2/4 (38)
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is the effective Rabi frequency. γ (ω) is the decay rate at
frequency ω and its functional form reads

γ (ω) = π

4

∑
k

g̃2
k δ(ω − ωk) = πG̃(ω)/4. (39)

In general, it is convenient to solve the Bloch equations (34)
with the aid of Laplace transform. However, for the steady-
state solutions, one just needs to perform following matrix
operation:

〈
̃σ 〉ss = −M−1 
I , (40)

which leads to

〈σ̃x〉ss = 4γy

(
γxγz − γ 2

c

) + 2δ̃
(
2δ̃γx − γcÃ

)
2δ̃

(
2δ̃γx − γcÃ

) + γz

(
Ã2 + 4γxγy

) , (41)

〈σ̃y〉ss = −2Ãγxγz − 2γc

(
2δ̃γx − γcÃ

)
2δ̃

(
2δ̃γx − γcÃ

) + γz(Ã2 + 4γxγy)
, (42)

〈σ̃z〉ss = −4γcγxγy + Ã
(
2δ̃γx − γcÃ

)
2δ̃

(
2δ̃γx − γcÃ

) + γz(Ã2 + 4γxγy)
. (43)

B. The secular approximation

Since we are interested in the physics in the strong-driving
and moderately-weak-damping regimes, it is convenient to
treat the problem in the dressed-state picture where one can
invoke the secular approximation to simplify the analytical
results. Thus, we can rewrite Eqs. (34) in terms of the
mean values of the dressed-state operators. The dressed-state
operators are related to the bare TLS operators by the relations

sx = cos(2φ)σz − sin(2φ)σx,

sy = σy, (44)

sz = − cos(2φ)σx − sin(2φ)σz.

Denoting the mean values of dressed-state operators by

〈s̃μ(t)〉 = Tr[sμρ̃S(t)], (45)

and introducing the raising and lowering operators s± =
1
2 (sx ± isy) for the dressed states, we can show the following
relations:

〈s̃+(t)〉 = 〈s̃−(t)〉∗ = 1
2 [cos(2φ)〈σ̃z(t)〉

− sin(2φ)〈σ̃x(t)〉 + i〈σ̃y(t)〉], (46)

〈s̃z(t)〉 = − cos(2φ)〈σ̃x(t)〉 − sin(2φ)〈σ̃z(t)〉. (47)

Using Eqs. (46) and (47), we are able to rewrite the Bloch
equations in a new form:

d

dt

⎛
⎝〈s̃+(t)〉

〈s̃−(t)〉
〈s̃z(t)〉

⎞
⎠ = M ′

⎛
⎝〈s̃+(t)〉

〈s̃−(t)〉
〈s̃z(t)〉

⎞
⎠ − 
I ′, (48)

where the elements of matrix M ′ are given by

M ′
11 = M ′∗

22 = i�̃ − �deph,

M ′
33 = −�rel,

M ′
12 = M ′

21 = − 1
4 [γ (ωL − �̃) + γ (ωL + �̃)] sin2(2φ),

M ′
13 = M ′

23 = − 1
2 [γ (ωL + �̃) cos2 φ − γ (ωL − �̃) sin2 φ]

× sin(2φ),

M ′
31 = M ′

32 = − 1
2γ (ωL) sin(4φ). (49)

Here,

�deph = γ (ωL + �̃) cos4 φ + γ (ωL − �̃) sin4 φ

+ γ (ωL) sin2(2φ), (50)

�rel = 2γ (ωL + �̃) cos4 φ + 2γ (ωL − �̃) sin4 φ, (51)

are the dephasing and relaxation rate, respectively. The
inhomogeneous column vector is 
I ′ = (�c,�c,�p) with

�c = 1
2 [γ (ωL) + γ (ωL + �̃) cos2 φ

+ γ (ωL − �̃) sin2 φ] sin(2φ), (52)

�p = 2γ (ωL + �̃) cos4 φ − 2γ (ωL − �̃) sin4 φ. (53)

Up until now, we just change the representation without
any approximation. To proceed the treatment analytically, we
invoke the secular approximation; namely, the neglect of the
nondiagonal elements of M ′ and �c of the inhomogeneous
part 
I ′, which is justified when the driving is strong enough
or largely detuned [�̃ � γ (ωL),γ (ωL ± �̃)]. By the secular
approximation, Eqs. (48) gives the decoupled equations

d

dt
〈s̃+(t)〉 = (−�deph + i�̃)〈s̃+(t)〉, (54)

d

dt
〈s̃z(t)〉 = −�rel〈s̃z(t)〉 − �p, (55)

which lead to the solutions of the simple form

〈s̃+(t)〉 = 〈s̃−(t)〉∗ = − 1
2 cos(2φ)e(−�deph+i�̃)t , (56)

〈s̃z(t)〉 = − �p

�rel
(1 − e−�relt ) + sin(2φ)e−�relt , (57)

where we have used the initial condition 〈σz(0)〉 = −1.
By using the inverse relations of Eqs. (44), we can derive

the explicit form of 〈σ̃μ(t)〉, which reads

〈σ̃x(t)〉 = cos(�̃t)e−�depht sin(2φ) cos(2φ)

+
[

�p

�rel
(1 − e−�relt ) − sin(2φ)e−�relt

]
cos(2φ), (58)

〈σ̃y(t)〉 = − sin(�̃t)e−�depht cos(2φ), (59)

〈σ̃z(t)〉 = − cos(�̃t)e−�depht cos2(2φ)

+
[

�p

�rel
(1 − e−�relt ) − e−�relt sin(2φ)

]
sin(2φ). (60)

Similarly, the master equations and solutions for the other
three Hamiltonians can be obtained by the same procedure
for Hζ -ξk -TRWA(t). Alternatively, one can directly obtain the
corresponding results for the other Hamiltonians from those for
Hζ -ξk -TRWA(t) by replacing the quantities of the same position
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in the effective Hamiltonian. For instance, when the parameters
in above equations are replaced as follows:

Ã → A, δ̃ → δ0, G̃(ω) → G(ω), (61)

we obtain the results for the traditional RWA approach.

IV. DYNAMICS OF POPULATION DIFFERENCE
AND COHERENCE

In this section, we start to identify the relation between
our method and FBM approach and demonstrate the physical
effects induced by the CR terms by comparing the results
of the three RWA-like and RWA methods. In the following,
because we consider the weak-dissipative-coupling case, the
renormalization of the tunneling can be well approximated
as η ≈ 1 for Hζ -ξk -TRWA(t) and Hξk -TRWA(t). Therefore, in
the weak-driving limit, the resonance condition ωL = η�

for Hζ -ξk -TRWA(t) and Hξk-TRWA(t) is nearly the same as the
resonant condition ωL = � for H RWA(t).

Henceforth, for the sake of simplicity, we use the dif-
ferent superscript of the effective Hamiltonian to denote
the four methods of the RWA form and their results, e.g.,
the ζ -ξk-TRWA represents the results calculated by exactly
solving the master equation for Hζ -ξk-TRWA(t) while the
ζ -ξk-TRWA + SA stands for the analytical results calculated
within the secular approximation (SA) for Hζ -ξk-TRWA(t).

We now introduce how to calculate the physical quantities
of primary interest within our formalism. In general, it is
convenient to calculate the physical quantities by using the
reduced density matrix governed by the effective Hamiltonian,
which is obtained by ρ̃S(t) = TrB[ρ̃SB (t)]. Notice that ρ̃SB(t)
is related to the density matrix of the total system ρSB (t) in the
original frame by ρ̃SB (t) = R(t)eS(t)ρSB (t)e−S(t)R†(t). Thus,
we can give the population difference for the ζ -ξk-TRWA as
follows:

〈σz(t)〉 = TrSB[σzρSB (t)]

= TrSB[R(t)eS(t)σze
−S(t)R†(t)ρ̃SB(t)]

= TrSB[R(t)σzR
†(t)ρ̃SB(t)]

= TrS[(σ+eiωLt + σ−e−iωLt )ρ̃S(t)]

= 〈σ̃z(t)〉 cos(ωLt) − 〈σ̃y(t)〉 sin(ωLt). (62)

When the Bloch equations (34) are exactly solved, the
population difference can be completely determined. In
addition, we can give simple analytical solutions by using the
approximate results for 〈σ̃μ(t)〉 given in Eqs. (58)–(60), which
lead to the analytical expression

〈σz(t)〉 = cos(ωLt)e−�relt

[
�p

�rel
(e�relt−1)− sin(2φ)

]
sin(2φ)

− cos(ωLt) cos(�̃t)e−�depht cos2(2φ)

+ sin(ωLt) sin(�̃t)e−�depht cos(2φ). (63)

Note that the approximate solutions are derived with the aid
of the secular approximation in the dressed-state picture,
which means that the solutions are valid for a sufficiently
strong driving or a largely detuned driving. In addition, when
replacing the involved physical quantities (Ã, �̃, �̃, and g̃k) of
the general treatment by the corresponding bare or modified

quantities of the other three effective Hamiltonians (H RWA,
Hξk -TRWA, and Hζ -TRWA), respectively, one immediately
obtain the corresponding population difference with the same
mathematical forms as the formulas (62) and (63) for the
ζ -ξk-TRWA method.

Similarly, the coherence for the ζ -ξk-TRWA method can be
evaluated as the population difference,

〈σx(t)〉 = TrSB [σxρSB(t)]

= TrSB [R(t)eS(t)σxe
−S(t)R†(t)ρ̃SB(t)]

= η{cos X2〈σ̃x(t)〉 + sin X2[〈σ̃z(t)〉 sin(ωLt)

+〈σ̃y(t)〉 cos(ωLt)]}, (64)

where X2 = A
ωL

ζ sin(ωLt). The formula shows that the CR
terms of the driving lead to a multifrequency dependence
of the coherence because of the time factors cos X2 and
sin X2. However, within the Rabi-RWA, cos X2 and sin X2

are replaced with 1 and 0, respectively, and the coherence is
simply determined by the mean value of σx with respect to the
reduced density matrix for the Hamiltonian H RWA.

Before discussing the strongly driven dynamics, we show
the relations between the RWA method and the other three
RWA-like methods in the weak-driving and weak-damping
limit. It is well known that the RWA is reasonably used to
describe the physics of interest when both the driving and
damping are weak enough. In the following we demonstrate
that our methods agree with the RWA one in the weak-
driving and weak-damping limit by the asymptotic behavior
of the modified quantities of the ζ -ξk-TRWA. In the weak-
damping limit, η = 1. On the other hand, in the weak-driving
limit A/ωL 	 1, we expand J1( A

ωL
ζ ) as J1( A

ωL
ζ ) ≈ A

2ωL
ζ +

O(A3ζ 3

ω3
L

), and substituting it into Eq. (13) we obtain ζ = 1
2 ,

and Ã = A. Moreover, we have J0( A
ωL

ζ ) ≈ 1 and then, δ̃ ≈
� − ωL. Therefore, the modified physical quantities recover
the bare ones of the RWA. Besides, all decay rates of the
ζ -ξk-TRWA (39) at the three transition frequencies ωL and
ωL ± �̃ tend to the same value of πG(�)/4 when ωL = � and
A/ωL 	 1. Thus, it turns out that the RWA result is the limit
of the three methods (the ζ -TRWA, ξk-TRWA and ζ -ξk-TRWA
methods) in the weak-driving and weak-damping limit. In
the following, we study the strongly driven dynamics by
comparing the results of these methods and the FBM approach.

A. Comparison of our method and
Floquet–Born–Markov approach

In this section, we reveal the relation between the ζ -TRWA
method and the FBM approach (whose results will be
denoted by FBM in plots). The Floquet Hamiltonian and
the corresponding master equation used for evaluating the
dynamics in this work are referred to as Eqs. (4) and (38) in
Ref. [14], where the general time-dependent Bloch–Redfield
tensor in the master equation (38) is replaced by Eq. (47)
in Ref. [14] (this is the so-called moderate rotating-wave
approximation—MRWA).

We first compare the population difference predicted by
the ζ -TRWA, ζ -TRWA + SA, and FBM approaches. We plot
the population difference as a function of time t for the three
methods with A/ωL = 0.1 in Fig. 1 and A/ωL = 1 in Fig. 2.
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FIG. 1. (Color online) 〈σz(t)〉 as a function of t is shown for A/ωL = 0.1, α = 0.01, and (a) ωL = � and (b) ωL = 4�.

We find that, when A/ωL = 0.1 or 1, the ζ -TRWA + SA
and FBM approaches give almost the same results. In fact,
we verify numerically that, in the region of A/ωL < 2, the
ζ -TRWA + SA approach gives almost the same dissipative
dynamics (α �= 0) and nondissipative dynamics (α = 0) as
that of the FBM approach. It means that, in some senses,
the approximation used in ζ -TRWA + SA is equivalent to
those used in the FBM approach. In other words, the role
of MRWA of treating the dissipation in the FBM approach is
approximately equivalent to that of the two approximations
in our treatment: (i) the neglect of 1

2

∑
k gk(bkσ− + b

†
kσ+) in

the transformed Hamiltonian; (ii) the secular approximation.
Although the results of the ζ -TRWA + SA agrees quite well
with those of the FBM approach in the certain parameter
region, they may not coincide with those of the ζ -TRWA
because the secular approximation used can be invalid for
moderately weak driving, such as the case in Fig. 1(a).

In Figs. 3(a)–3(d), we plot the population difference
and coherence for the ratio A/ωL = 2.5, which is beyond
the region A/ωL < 2. It is found that ζ -TRWA and
ζ -TRWA + SA give the same results and their time evolution
differs from that of the FBM approach in particular when
ωL = � even though the oscillatory frequency of their
stable states is the same. The difference can be understood
by recalling the approximation invoked in H̃ ζ -TRWA. When
deriving H̃ ζ -TRWA, we neglect the second- and higher-order
Bessel functions of the first kind, whose influence depends
on the ratios A/ωL and �/ωL. This approximation can be
justified in the region of A/ωL < 2. Therefore, we see the
excellent agreement of the results given by the ζ -TRWA + SA

and FBM approaches. However, when A/ωL is out of the
region, the approximation of H̃ ζ -TRWA might not be well
justified and it arises that the difference between our method
and FBM approach. Nevertheless, Figs. 3(c) and 3(d) show
that, when A/ωL = 2.5 and ω � �, the ζ -TRWA can also
provide a good description compared with the FBM approach.

To end this section, we give some remarks on the com-
parison of the ζ -TRWA and FBM approaches. First, from
the above comparisons, we verify the valid driving-parameter
space of our method given in Sec. II C and clarify the relation
between the ζ -TRWA and FBM approaches. It is obvious that
our method is analytically more simple and numerically more
efficient than the FBM approach. Second, in some senses, the
MRWA’s role invoked in the FBM approach is equivalent to
the two specific approximations in the ζ -TRWA treatment:
(i) the neglect of the CR terms 1

2

∑
k gk(b†kσ+ + bkσ−) in the

transformed Hamiltonian and (ii) the secular approximation.
We should point out that, although the secular approximation is
generally valid in the strong driving regimes, the neglect of the
CR terms 1

2

∑
k gk(b†kσ+ + bkσ−) may not be justified since the

CR terms of the dissipative coupling lead to the renormaliza-
tion of the spectral density [see Eq. (26)]. In the following, we
discuss how the effects of the renormalized spectrum modify
significantly the time evolution under certain conditions.

B. Reduction of dephasing and relaxation rates

In this section, we examine the role of the CR terms of the
driving and dissipative coupling in the interference between
driving and dissipation. To begin with, we compare the time

FIG. 2. (Color online) 〈σz(t)〉 as a function of t is shown for A/ωL = 1, α = 0.01, and (a) ωL = � and (b) ωL = 4�.
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FIG. 3. (Color online) [(a), (c)] 〈σz(t)〉 and [(b), (d)] 〈σx(t)〉 as functions of t are shown for A/ωL = 2.5, α = 0.01, and driving frequencies
[(a), (b)] ωL = � and [(c), (d)] ωL = 4�.

evolution of the population difference and coherence, which
is shown in Figs. 4(a)–4(d) and obtained by the ζ -TRWA,
ξk-TRWA, and ζ -ξk-TRWA for A/ωL = 1. It is obvious that
the results of the ξk-TRWA method differ from those of
the other two methods for both on-resonance driving and
off-resonance driving, which results from the break-down
of the Rabi-RWA used in the ξk-TRWA approach. On the
other hand, when comparing the results of the ζ -TRWA
and ζ -ξk-TRWA approaches, one finds that those of the two
treatments coincide for the off-resonance case but differ from
each other for the on-resonance case. It indicates that the
CR terms 1

2

∑
k gk(b†kσ+ + bkσ−) omitted in ζ -TRWA indeed

have significant effects on the dynamics because the driving
is strong enough for the on-resonance case. To understand the
phenomenon, we use the analytical results obtained by the
secular approximation (Sec. III B) to analyze the relaxation
and dephasing processes.

In order to demonstrate the difference of the time evolution,
we check the behaviors of the dephasing rate [Eq. (50)]
and the relaxation rate [Eq. (51)], which characterize the
dephasing and relaxation processes of the dressed states. We
show the comparison of the relaxation rates in Fig. 5(a)
and dephasing rates in Fig. 5(b) given by the four methods
(the RWA, ζ -TRWA, ξk-TRWA, and ζ -ξk-TRWA methods)
for ωL = �. In comparison with the RWA results, the three
TRWA methods predict that both kinds of rates decrease
as A increases. Besides, one finds that the ζ -ξk-TRWA
method predicts the smallest both kinds of rates than the
other three methods. In the following, we take the relaxation
rate as an instance to show how the CR terms modify its

value (the behavior of the dephasing rate can be understood
similarly).

First, we show the effects of the driving CR terms on the
relaxation rate of the ζ -TRWA method as compared with those
of the RWA method since the ζ -ξk-TRWA method has the same
treatment of the driving CR terms as the ζ -TRWA method.
When ωL = �, the relaxation rate has the form

�
ζ -TRWA
rel ≈ π

4
G(�) + παδ̃ + O(δ̃2). (65)

However, the RWA method gives a constant decay rate π
4 G(�)

since δ0 = 0. As the effective detuning δ̃ = J0( A
ωL

ζ )� − � <

0 decreases with increasing A, one can see that the relaxation
rate decreases accordingly. Physically, the nonzero effective
detuning is related to the Bloch–Siegert-type correction [28].
As is shown in Ref. [24], by the effective Rabi frequency
(δ̃2 + Ã2/4)1/2, we have calculated the Bloch–Siegert shift up
to fourth order in A, which is consistent with Floquet theory
[21]. In fact, the Bloch–Siegert shift has been embodied in
both the effective detuning δ̃ and the modified driving strength
Ã in our formalism.

Second, we show the role of the dissipative CR terms
of the dissipative interaction of the ξk-TRWA as compared
to the RWA results since the ζ -ξk-TRWA method has the
same treatment of the dissipative CR terms as the ξk-TRWA
method. In our formalism, the dissipative CR terms lead to the
renormalized spectral density given by Eq. (26). For A � �

and ωL = η�, the relaxation rate for the ξk-TRWA is given
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FIG. 4. (Color online) [(a), (c)] 〈σz(t)〉 and [(b), (d)] 〈σx(t)〉 as functions of t are shown for A/ωL = 1, α = 0.01, and driving frequencies
[(a), (b)] ωL = � and [(c), (d)] ωL = 4�.

as [22]

�
ξk-TRWA
rel = π

4
G(η�)

[
1 − 3

16

(
A

η�

)2]

×
[

1 − 1

16

(
A

η�

)2]−2

. (66)

It shows that the rate reduces as A increases, which results
from the modified factor (2η�)2/(ω + η�)2 of the spectral
density G̃(ω). Furthermore, the modified factor arises from
the parameter ξk of the generator with the form ξk = ωk/(ωk +
η�), which depends on the boson frequency [26]. Physically,
ξk ≈ 1 when ωk � η�, which means that the bath modes can
follow the motion of the system. When ωk 	 η�, ξk becomes

very small, which means that the corresponding bath modes
are too slow to follow the motion. However, the RWA method
does not capture this nature of the bath modes.

Last not the least, we show the feature of the interference
between driving and dissipation in the presence of two types
of the CR terms. It is obvious that the ζ -ξk-TRWA takes into
account the effects of two types of CR terms, which can be
represented by the renormalized physical quantities δ̃, Ã, g̃k ,
etc. Moreover, the effects of the renormalized coupling g̃k can
be described by G̃(ω), which possesses the factor

F =
[ 2J0

(
A
ωL

ζ
)
η�

ω + J0
(

A
ωL

ζ
)
η�

]2

.

FIG. 5. (Color online) (a) The relaxation rate and (b) the dephasing rate as functions of A are shown for α = 0.01 and ωL = �. γ0 =
πG(�)/4 is set as units.
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The factor is related to the renormalized tunneling J0( A
ωL

ζ )η�,

in which the renormalized factor J0( A
ωL

ζ ) comes from the
driving CR interactions and the other factor η results from the
dissipation-CR couplings. In addition, when ω → J0( A

ωL
ζ )η�,

F tends to 1, and then G̃(ω) → G(ω). In other words, in
some senses, the modification of the spectral density becomes
unobservable. However, when ω �= J0( A

ωL
ζ )η�, G̃(ω) is dif-

ferent from G(ω), which contributes to the distinct dynamic
characters of the ζ -ξk-TRWA treatment in comparison with
the time evolution of the ζ -TRWA [see Figs. 4(a) and 4(b)].

From the above discussion, we conclude that the CR
terms lead to the corrections of physical quantities and the
renormalization of the spectral density, which contribute
important influence to the relaxation and dephasing processes.
Moreover, in strong-driving regimes and for the on-resonance
driving ωL = �, the effects of the driving CR and dissipative
CR terms cause the reduction in the the relaxation and
dephasing rates. For the properly off-resonance driving, the
renormalization of the spectral density becomes unobservable
and the effect of the CR terms of the driving dominates the
difference between RWA and non-RWA results.

C. Effects of counter-rotating terms on steady-state properties

We now discuss the effects of the CR terms on the properties
of the steady state of the TLS, i.e., 〈σz(t → ∞)〉 and 〈σx(t →
∞)〉. We first consider the behavior of 〈σz(t)〉 in the long-time
limit, which is a periodic oscillation with the driving frequency
ωL,

〈σz(t → ∞)〉 = 〈σ̃z〉ss cos(ωLt) − 〈σ̃y〉ss sin(ωLt)

= P∞ cos(ωLt + ϕ), (67)

where

P∞ =
√

〈σ̃z〉2
ss + 〈σ̃y〉2

ss (68)

is the steady oscillation amplitude and the phase ϕ satisfies
tan ϕ = 〈σ̃y〉ss/〈σ̃z〉ss . The formula (67) is derived without the
secular approximation. In Fig. 6(a), we show the amplitude
P∞ given by the four methods as a function of A under
the resonance condition ωL = �. We note that, in the weak-
driving limit, the oscillation amplitudes given by the four
methods agree with each other. However, they are different
in the strong-driving limit, which indicates that the CR terms

can significantly modify the steady state. The influence of
the CR terms on P∞ can be revealed by the similar analysis
as the former subsection. In the strong-driving case, P∞ is
determined by the behavior of 〈σ̃z〉ss since 〈σ̃y〉ss becomes
very small when the driving amplitude A is large enough. For
ωL = �, it is easy to derive explicit forms of 〈σ̃z〉ss for the
three methods,

〈σ̃z〉RWA
ss = A

2�
, (69)

〈σ̃z〉ζ -TRWA
ss ≈ Ã

2�
+

(
4�2 − Ã2

Ã�2

)
δ̃, (70)

〈σ̃z〉ξk -TRWA
ss = A3

2�(16�2 − 3A2)
. (71)

It is the driving CR terms that induce the corrections to
〈σ̃z〉ζ -TRWA

ss and lead to the difference between 〈σ̃z〉ζ -TRWA
ss

and 〈σ̃z〉RWA
ss , while the difference between 〈σ̃z〉ξk-TRWA

ss and
〈σ̃z〉RWA

ss results from the renormalization of the spectral density
included in 〈σ̃z〉ξk-TRWA

ss . 〈σ̃z〉ζ -ξk -TRWA
ss , which is different from

those of the other three methods, includes the effects of both
the driving and dissipative CR terms. In Fig. 6(b), we show
〈σ̃z〉ss of the four methods for comparison. It is interesting to
find that either the driving CR terms or the dissipative CR terms
reduce the values of 〈σ̃z〉ss . Especially, when the two types of
CR terms are taken into account, ζ -ξk-TRWA predicts negative
values of 〈σ̃z〉ss in strong contrast to the positive values given
by the other three methods.

We show how the CR terms modify P∞ upon variation of
ωL for a fixed A. Figure 7(a) shows P∞ as a function of ωL for
a finite driving A = 0.5�. It is notable that when ωL < 0.75�

or ωL > 1.25�, the ζ -ξk-TRWA result is in good agreement
with the ζ -TRWA result, and the ξk-TRWA result is consistent
with the RWA one. This indicates that, for the large-detuning
case, the renormalized effects of the spectral density in the
ζ -ξk-TRWA (ξk-TRWA) treatment becomes unobservable by
comparison with the ζ -TRWA (RWA) results. However, the
effect of the driving CR terms gives rise to the difference
between the ζ -TRWA (ζ -ξk-TRWA) and RWA (ξk-TRWA)
results. The phenomenon can be understood analytically. For
|ωL − �| � 0 and moderate strong-driving case, we have

FIG. 6. (Color online) (a) The steady oscillation amplitude P∞ and (b) 〈σ̃z〉ss as functions of A are shown for α = 0.01 and driving
frequency ωL = �.
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FIG. 7. (Color online) (a) The steady oscillation amplitude P∞ and (b) the modified driving strength Ã as functions of ωL are shown for
A = 0.5� and α = 0.01.

�p/�rel � 1, which is independent of the spectral density.
Therefore, 〈σ̃z〉ss takes the following simple form:

〈σ̃z〉ζ -ξk-TRWA
ss = 〈σ̃z〉ζ -TRWA

ss = Ã

2
√

δ̃2 + Ã2/4
, (72)

〈σ̃z〉ξk -TRWA
ss = 〈σ̃z〉RWA

ss = A

2
√

δ2
0 + A2/4

. (73)

Since the modified quantities (Ã and δ̃) induced by the driving
CR terms are different from the bare ones (A and �), they
determine the difference between the two types of stable states.
We show Ã as a function of ωL in Fig. 7(b), which indicates
that this difference can be enhanced for large detuning.

We discuss the steady-state behavior of the coherence in
the following. For the ζ -ξk-TRWA method (the ζ -TRWA case
is similar), we have

〈σx(t → ∞)〉 = 〈σx〉sv +
∞∑

n=1

Qn,∞ cos(2nωLt − ϕn), (74)

where

〈σx〉sv = ηJ0

(
A

ωL

ζ

)
〈σ̃x〉ss + ηJ1

(
A

ωL

ζ

)
〈σ̃z〉ss (75)

is the static value of the coherence,

Qn,∞ = η

√
N2

n + M2
n (76)

is the amplitude of the oscillation with frequency 2nωL, and
the phase is given by ϕn = arctan(Mn/Nn). The parameters
Nn and Mn read

Nn = 2J2n

(
A

ωL

ζ

)
〈σ̃x〉ss

+
[
J2n+1

(
A

ωL

ζ

)
− J2n−1

(
A

ωL

ζ

)]
〈σ̃z〉ss , (77)

Mn =
[
J2n+1

(
A

ωL

ζ

)
+ J2n−1

(
A

ωL

ζ

)]
〈σ̃y〉ss . (78)

We note that, in the long-time limit, the coherence oscillates
around its static value with even multiples of driving frequency
2nωL. However, when the driving CR terms are neglected, the
coherence remains constant after a sufficiently long time. No-
tice that the static value of the coherence is mainly determined
by 〈σ̃x〉ss . In the strong-driving limit, 〈σ̃x〉ss = �p

�rel
cos(2φ).

We verify that the four methods give little difference in the
static values of the coherence [see Figs. 8(a) and 8(b)]. On
the other hand, we consider the higher-frequency oscillation
induced by the driving CR terms. In Figs. 9(a) and 9(b), we
show the steady oscillation amplitudes Q1,∞ of the frequency
2ωL for the four methods. It is notable that the amplitudes
for the ζ -ξk-TRWA and ζ -TRWA method can be enhanced
significantly as the driving strength increases, while those of
the other methods, which do not take into account the driving
CR terms, are zero. Thus, we point out that the even-frequency

FIG. 8. (Color online) (a) The static value of coherence in the long-time limit as a function of A is shown for α = 0.01 and ωL = �.
(b) The static value of coherence as a function of ωL is shown for α = 0.01 and A = 0.5�.
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FIG. 9. (Color online) (a) The steady oscillation amplitude of the coherence as a function of A is shown for α = 0.01 and ωL = �. (b) The
steady oscillation amplitude of the coherence as a function of ωL is shown for α = 0.01 and A = 0.5�.

oscillation is a pure character induced by the driving CR
terms. In addition, in Fig. 9(b), the renormalization of the
spectral density results in the difference between ζ -ξk-TRWA
and ξk-TRWA for near-resonance cases.

D. Coherent destruction of tunneling

In this section, we apply the ζ -TRWA and ζ -ξk-TRWA
methods to study how the dissipative environment affects
the intriguing phenomenon known as coherent destruction
of tunneling (CDT) [29–31]. As discussed in our previous
work, the Rabi-RWA method cannot give the CDT under the
condition, i.e., ωL = 10� and A = 24.0483� [24]. Therefore,
the RWA and ξk-TRWA methods based on Rabi-RWA cannot
give CDT. In Fig. 10, we show the probability of the TLS
to remain in its initial state for the CDT condition with
dimensionless coupling constant α = 0.01. The results of both
the ζ -ξk-TRWA and ζ -TRWA methods show that the tunneling
of the TLS is effectively suppressed. However, the ζ -ξk-TRWA
method gives a slower dissipative process than that of the
ζ -TRWA, which can be understood by analyzing the decay
rate γ (ω). Within the description of the ζ -ξk-TRWA, we find
that the decay rate γ (ω) depends on the renormalized spectral
density G̃(ω), which has the renormalized factor

F =
[ 2J0

(
A
ωL

ζ
)
η�

ω + J0
(

A
ωL

ζ
)
η�

]2

FIG. 10. (Color online) The probability of the TLS remains in its
initial state as a function of t is shown for α = 0.01, ωL = 10�, and
A = 24.0483�.

[see Eq. (19)]. Notice that, under the CDT condition, J0( A
ωL

ζ )
tends to zero (not exactly zero) and, thus, the decay rate of
the ζ -ξk-TRWA method can be significantly reduced, which
in turn makes the dissipation effect weaker than that of the
ζ -TRWA. Our result indicates that, in spite of the dissipation,
it is possible to achieve the CDT and keep the initial state for a
relatively long time owing to the interference between driving
and dissipation.

V. CONCLUSION

To summarize, we proposed a method based on the
unitary transformation to study the dissipative dynamics of
the driven spin-boson model. The unitary transformation is
applied to construct an effective Hamiltonian, which possesses
modifications to the driving- and dissipative-related quantities
induced by the effects of the CR terms. Besides, the effective
Hamiltonian takes a simple RWA-like form. Starting from the
effective Hamiltonian, we are able to derive Born–Markov
master equation in the transformed rotating frame, which can
be exactly solved without difficulty. The general procedure
of the method is simple and clear. Moreover, there are two
particular treatments derived from the general treatment based
on the generator (7) by setting either ζ = 0 or ξk = 0 and
invoking further the approximation of neglecting the CR
terms of the driving or the dissipative coupling, respectively.
Including the treatment of neglecting all the CR terms, there
are four methods with the effective Hamiltonians of the
same mathematical form and corresponding master equations.
We systematically examine the results of the four methods
from weak to strong driving in the weak-damping regime
in order to clarify the effects of the CR terms on the
population difference and coherence. We find that the CR
terms of the dissipative coupling contribute their influence
by renormalizing the spectral density, which characterizes the
dissipative property of the bath, and the CR terms of the
driving cause the modifications to the detuning and driving
strength. In the limit of weak driving and weak damping, we
analytically show the asymptotic behavior of the modified
quantities, which naturally tend to the bare ones and, thus,
the four methods give consistent results. In the regime of
strong driving and weak damping, the four methods generally
give different results owing to the effects of CR terms. In the
case of resonant strong driving, we demonstrated that the CR
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terms of both the driving and dissipative coupling prolong the
relaxation and dephasing processes and significantly influence
the steady state of the TLS. In the case of largely detuned
driving, it turned out that the influence of the CR terms of the
dissipative coupling becomes negligible while the CR terms
of the driving contribute the dominant modifications to the
steady-state solutions. In addition, we applied the methods of
taking account of the CR terms of the driving to study how the
dissipation influences the CDT. The general ζ -ξk-TRWA
treatment illustrates that, in the presence of the CR terms of
both the driving and dissipative coupling, the system is able
to survive in its initial state under the CDT condition for a
relatively long time without obvious decay.

We identify the relation between our method and the
FBM approach by the comparison of the results of the
ζ -TRWA + SA method with those of the FBM approach. In
the valid parameter space of our method for nondissipative
driven dynamics, it is interesting to find the numerical equiv-
alence between the FBM approach and the ζ -TRWA + SA
solution. The equivalence reflects that the role of MRWA
invoked in the FBM approach is approximately equivalent
to two approximations in our treatment: (i) the neglect of
1
2

∑
k gk(b†kσ+ + bkσ−) in the transformed Hamiltonian and

(ii) the secular approximation. To our knowledge, the FBM and
the ζ -TRWA approaches properly take into account the effects
of the driving CR terms but do not consider the contributions of
the dissipative CR terms because of the use of the MRWA in the
FBM approach and the neglect of 1

2

∑
k gk(b†kσ+ + bkσ−) in the

ζ -TRWA treatment, respectively. In the Born–Markov formal-
ism, these method are sufficient to describe the issue when the
driving is largely detuned in which case the renormalization
of the spectral density becomes unobservable. However, in
the case of the resonant strong driving, we must take into
account the effects of the dissipative CR terms, which causes
the renormalization of the spectral density in comparison with
those of the RWA by using the bare spectral density and leads
to a different dynamical evolution of the system.
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